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Abstract
Geometric and algebraic aspects of multi-ratios M2n are investigated in detail.
Connections with Menelaus’ theorem, Clifford configurations and Maxwell’s
reciprocal quadrangles are utilized to associate the multi-ratios M4, M6 and M8

with tetrahedra, octahedra and cubo-octahedra respectively. Integrable maps
defined on face-centred (fcc) lattices and irregular lattices composed of the
face centres of simple cubic lattices are constructed and related to the discrete
KP and BKP equations and the integrable discrete Darboux system governing
conjugate lattices. An interpretation in terms of integrable irregular lattices of
slopes on the plane is also given.

PACS numbers: 02.40.Dr, 02.40.Hw, 02.30.Ik, 05.50.+q

1. Introduction

The classical cross-ratio in conformal and projective geometry [9, 36] has been the subject
of extensive studies. Apart from its significance in pure (differential) geometry, it also finds
application in other areas such as the geometric analysis of flows in fluid mechanics [19, 38].
In the past decade, the importance of the cross-ratio and its natural quaternionic generalization
has been recognized in the field of discrete integrable geometry in the context of discrete
holomorphic functions and conformal mappings, circle and sphere patterns, and discrete
isothermic, constant mean curvature and minimal surfaces (see [3] and references therein).

The multi-ratio of 2n points on the complex plane (M2n) which constitutes a canonical
algebraic extension of the cross-ratio appears to have attracted much less attention even though
a geometric interpretation of real and purely imaginary multi-ratios was given in as early as
1937 by Morley and Musselman [32]. Multi-ratios may be used in the formulation of Carnot’s
theorem [8] and canonical generalizations of Ceva’s and Menelaus’ theorems [28, 39]. They
appear naturally in the context of the integrable Gaudin spin model [17, 18]. ‘Elliptic’ versions
of multi-ratios make an appearance in integrable time discretizations of the Calogero–Moser
and Ruijsenaars–Schneider models [33, 34] and in statistical mechanics in connection with the
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Bethe ansatz [26, 27]. Only recently, the six-point multi-ratio condition M6 = −1 has been
employed in the study of hexagonal circle patterns, regular triangular lattices and symmetric
circle patterns [1, 2].

In [24], a remarkable connection between Menelaus’ theorem of plane geometry, the
multi-ratio condition M6 = −1 and the integrable Kadomtsev–Petviashvili (KP) hierarchy of
soliton equations has been brought to light. In a subsequent paper [25], Maxwell’s reciprocal
figures of graphical statics representing frameworks in equilibrium have been linked to the
KP hierarchy of B-type and cross-ratio relations involving M4. In both cases, it has been
demonstrated that the underlying discrete KP and BKP equations constitute canonical objects
of plane inversive geometry.

Here, we further explore the geometry and algebra of multi-ratios. We present a novel
characterization of reciprocal quadrangles and establish a formal connection with Menelaus’
theorem via the multi-ratio condition M6 = −1. We show that BKP lattices consisting of an
infinite number of reciprocal quadrangles are governed by the multi-ratio condition M6 = −1
and three multi-ratio conditions M8 = 1. Interestingly, the latter three conditions may also
be interpreted as an integrable Möbius invariant version of the discrete Darboux system
descriptive of conjugate lattices. We demonstrate that the multi-ratio condition M6 = −1
constitutes an admissible constraint which ‘propagates’ through the lattice.

In [25], a natural correspondence between the cross-ratio M4 and tetrahedra has been
recorded. In this paper, this connection is reiterated and the multi-ratios M6 and M8 are shown
to be canonically defined on octahedra and cubo-octahedra respectively. The vertices of these
(quasi-)regular polyhedra are interpreted as the vertices of regular face-centred cubic (fcc)
lattices and irregular lattices composed of the face centres of simple cubic lattices. A well-
posed Cauchy problem for BKP lattices and associated irregular lattices of slopes on the plane
is formulated.

2. Menelaus’ theorem and reciprocal quadrangles

This paper is based on an interesting observation which characterizes quadrangles and provides
a link with Menelaus’ classical theorem of plane geometry. Here, we briefly review the basic
geometric and algebraic properties of Menelaus figures and reciprocal quadrangles [24, 25]
and record the above-mentioned novel characterization of quadrangles.

2.1. Menelaus’ theorem

We begin with a fundamental theorem of ancient Greek geometry which bears the name of
Menelaus but may have been known to Euclid [9, 36].

Theorem 1 (Menelaus’ theorem and its converse). Let A, B, C be the vertices of a triangle and
D, E, F be three points on the (extended) edges of the triangle opposite A, B, C respectively
(see figure 1). Then, the points D, E, F are collinear if and only if

AF

FB

BD

DC

CE

EA
= −1 (2.1)

where PQ/QR denotes the ratio of directed lengths associated with any three collinear points
P, Q, R.
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Figure 1. A Menelaus figure.
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Figure 2. A Menelaus configuration.

For our purposes, it is convenient to regard the plane as the complex plane and label the points
by complex numbers as indicated in figure 1. Thus, if we define the multi-ratio of 2n complex
numbers by

M2n = M(P1, . . . , P2n) = (P1 − P2)(P3 − P4) · · · (P2n−1 − P2n)

(P2 − P3)(P4 − P5) · · · (P2n − P1)
(2.2)

then the Menelaus relation (2.1) assumes the form

M(P13, P14, P12, P24, P23, P34) = −1. (2.3)

It is important to note that the multi-ratio is invariant under the group of Möbius transformations
acting on the complex plane. This property is well known for the classical cross-ratio of four
points [9, 36] which is represented by n = 2.

It is evident that the above multi-ratio relation may also be regarded as an identity for
the six points of intersection of four generic straight lines on the complex plane. However,
in general, the geometry of the multi-ratio condition (2.3) is that of four circles S1, S2, S3, S4

meeting at a point P as displayed in figure 2. Indeed, if we label the point of intersection of
two circles Si and Sk by Pik then the following theorem is obtained [24]:

Theorem 2 (The geometry of the multi-ratio condition M6 = −1). Four generic circles
S1, S2, S3, S4 on the complex plane pass through a point P if and only if the points of intersection
P13, P14, P12, P24, P23, P34 satisfy the multi-ratio condition

M(P13, P14, P12, P24, P23, P34) = −1. (2.4)

The connection with Menelaus’ theorem is provided by the symmetry group of the multi-ratio
condition (2.4). Indeed, since the latter is invariant under the group of inversive transformations
[9, 36], that is Möbius transformations and complex conjugation, the point P may be mapped
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Figure 3. A C4 Clifford configuration.

to infinity by means of an inversive transformation without changing the multi-ratio. The
circles S1, S2, S3, S4 then become straight lines l1, l2, l3, l4 and a Menelaus figure is obtained
(cf figure 1).

Theorem 2 implies that the multi-ratio condition (2.4) is invariant under any permutation
of the indices 1, 2, 3, 4. However, the multi-ratio condition (2.4) may also be formulated as

M(P14, P12, P24, P23, P34, P13) = −1. (2.5)

This implies that the four circles Sikl passing through the points Pik, Pil , Pkl also meet at a
point P1234, say (see figure 3). This is the content of a classical theorem due to Clifford [10]
and, indeed, point-circle configurations of this kind are known as Clifford configurations [40].

2.2. Reciprocal quadrangles

In the preceding, we have discussed the properties of figures consisting of four lines and six
points and their inversive geometric generalization. Here, we focus on figures involving six
lines and four points, namely quadrangles. Thus, given four points �23,�13,�12,� on the
complex plane, we denote the six lines linking these points by α, β, γ, α1, β2, γ3 as indicated
in figure 4. We may now inquire as to whether there exists another quadrangle which is such
that the lines of the two quadrangles are pairwise parallel and any three lines meeting at a
point of one quadrangle correspond to the edges of a triangle in the other (see figure 4). It
turns out that such a quadrangle always exists and is uniquely defined up to a scaling. Since
the defining relation between the two quadrangles is reciprocal in nature, the two quadrangles
(�23,�13,�12,�) and (�1,�2,�3,�123) are termed reciprocal quadrangles3.

In 1864, Maxwell [30] gave a remarkably simple constructive proof of the existence
of reciprocal quadrangles. His investigation of reciprocal quadrangles and, more generally,
reciprocal figures (configurations of points and lines) was instigated by a problem of graphical
statics, namely the existence of frames which can support forces. Thus, if a reciprocal

3 In [25], we referred to these as reciprocal triangles since the points � and �123 are uniquely determined by the
triangles (�23,�13,�12) and (�1,�2,�3). Here, we prefer to use the classical term quadrangle.
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Figure 4. Reciprocal quadrangles.

figure exists then the original figure (e.g. a quadrangle) may be regarded as a frame which
is in equilibrium with closed diagrams of forces provided by the closed polygons (e.g.
triangles) in the reciprocal figure. Reciprocal figures and related graphical methods were
applied extensively by Maxwell’s contemporaries in [7, 11, 12, 20, 21, 37]. Moreover,
Maxwell discovered a fascinating connection between the existence of reciprocal figures
and the representation of reciprocal figures as orthogonal projections of closed polyhedra.
Interestingly, a century later, this connection was rediscovered in the context of ‘artificial
intelligence’, namely the recognition and realizability of plane line drawings as three-
dimensional polyhedral scenes [16, 29].

It turns out [25] that the vertices of reciprocal quadrangles obey the cross-ratio relation

M(�23,�13,�12,�) = M(�1,�2,�3,�123). (2.6)

This relation is preserved by Möbius transformations which act independently on the two
quadrangles. Either quadrangle is thereby mapped to a quadrangle whose vertices are linked
by circular arcs which meet at a point. In [25], this observation has been exploited to define
reciprocal quadrangles in the setting of inversive geometry and it has been shown that these
are governed by the cross-ratio relation (2.6).

The novel key observation is now the following: if we regard the labels α, β, γ, α1, β2, γ3

as the slopes of the edges of the quadrangle (�23,�13,�12,�), then it is not difficult to show
that

M(α, β2, γ , α1, β, γ3) = −1. (2.7)

A proof of this fact will be obtained as a by-product of the deliberations of section 4. In fact,
it will be shown that (2.7) is also a sufficient condition for six lines being part of a quadrangle.
The multi-ratio condition (2.7) written as

M(α1, β, γ3, α, β2, γ ) = −1 (2.8)

therefore implies that there exists another quadrangle (�1,�2,�3,�123) with the same slopes
but different incidence structure (cf figure 4). Thus, an elegant alternative proof of the existence
of reciprocal quadrangles has been established. This is summarized in the following theorem.

Theorem 3 (A characterization of reciprocal quadrangles). Six lines with slopes α, β, γ,

α1, β2, γ3 are parallel to the edges of reciprocal quadrangles of the incidence structure
displayed in figure 4 if and only if

M(α, β2, γ , α1, β, γ3) = −1. (2.9)
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Figure 5. The elementary cells of G(1) and G(0).

Figure 6. The stella octangula.

3. Integrable lattices associated with Menelaus configurations and reciprocal
quadrangles

In [24, 25], it has been shown that there exist canonical integrable lattices on the complex
plane which encapsulate an infinite number of Menelaus figures, Clifford configurations and
reciprocal quadrangles. Their construction is summarized in this section.

3.1. Menelaus and Clifford lattices

We first observe that it is canonical to interpret the lines l1, l2, l3, l4 in the Menelaus figure 1
as degenerate triangles. In this way, we may think of a Menelaus figure as consisting of eight
triangles and six vertices. Accordingly, a Menelaus figure admits the same combinatorics
as an octahedron. Indeed, this becomes evident if one inspects the Clifford configuration
displayed in figure 3. Thus, the six points Pik represent the vertices of an octahedron while
the eight circles are associated with the eight triangular faces of the octahedron. We may
therefore regard a Menelaus figure or a Clifford configuration as the image of an octahedron
under some map ψ, say, which preserves the combinatorics.

It is natural to consider maps from a face-centred cubic (fcc) lattice to the complex plane,
that is

ψ : G(1) → C

G(1) = {(n1, n2, n3) ∈ Z
3 : n1 + n2 + n3 odd}. (3.1)

The edge structure of G(1) is obtained by starting at the vertex (1, 0, 0) of the Z
3 simple

cubic lattice and drawing diagonals across the faces of the cubes. The six diagonals on
each cube then form a tetrahedron as shown in figure 5(a). The eight tetrahedra inscribed
in any eight adjacent cubes enclose an octahedron (cf figure 6), thereby forming a stella
octangula, while any tetrahedron is enclosed by four octahedra. Thus, the G(1) fcc lattice is
composed of tetrahedra and octahedra. We now demand that any octahedron be mapped to a
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Clifford configuration in the sense specified earlier. Accordingly, the map ψ is defined by the
multi-ratio condition

M(ψ1̄,ψ2,ψ3̄,ψ1,ψ2̄,ψ3) = −1 (3.2)

where the arguments of ψ have been suppressed and the notation

ψ = ψ(n1, n2, n3) ψ1̄ = ψ(n1 − 1, n2, n3) ψ1 = ψ(n1 + 1, n2, n3) . . . (3.3)

has been used.
The multi-ratio condition (3.2) which now constitutes a lattice equation is nothing but an

integrable discrete version of the Schwarzian Kadomtsev–Petviashvili (SKP) equation and,
in fact, its entire hierarchy [5, 6]. It may also be regarded as a superposition principle for
solutions of the Schwarzian KP hierarchy as well as a permutability theorem associated with
Darboux-type transformations [24]. Since the dSKP equation is equivalent to the complex
discrete KP equation

τ1̄τ1 + τ2̄τ2 + τ3̄τ3 = 0 (3.4)

there exists a remarkable connection between Menelaus’ theorem and Hirota’s ‘master
equation’ (3.4). Links with pseudo-analytic functions (quasi-conformal mappings) have
also been recorded in [24]. We observe in passing that real solutions of the ‘tau-function’
equation (3.4) correspond to Menelaus lattices on the complex plane, that is lattices which
embody Menelaus figures rather than Clifford configurations.

3.2. Lattices composed of reciprocal quadrangles

It is evident that quadrangles admit the combinatorics of tetrahedra. Indeed, as Maxwell
pointed out [30], the very fact that a quadrangle may be regarded as an orthogonal projection
of a tetrahedron guarantees the existence of a reciprocal quadrangle. Thus, we now think
of a quadrangle as the image of a tetrahedron under a map �, say, which preserves the
combinatorics. A lattice composed of quadrangles is obtained by mapping the tetrahedra of
an fcc lattice onto the complex plane. If we consider two such maps, we may demand that the
images of corresponding pairs of tetrahedra constitute reciprocal quadrangles.

Under the assumption of a natural correspondence between pairs of tetrahedra, the
integrability of maps of the aforementioned kind has been established in [25]. Indeed, if,
for convenience, we choose the vertices of the second fcc lattice G(0) as the complement of
G(1) with respect to Z

3, that is (cf figure 5(b))

G(0) = {(n1, n2, n3) ∈ Z
3 : n1 + n2 + n3 even} (3.5)

then we may combine the two maps in question to

� : Z
3 → C (3.6)

and demand that the images of the two tetrahedra in any elementary cube of the Z
3 lattice

under � be reciprocal quadrangles. If, as usual, indices indicate increments of the respective
variables then the pairs of reciprocal quadrangles are labelled as in figure 4, namely by
(�23,�13,�12,�) and (�1,�2,�3,�123).

In order to provide an analytic description of lattices on the complex plane which consist of
reciprocal quadrangles, it is convenient to focus initially on one pair of reciprocal quadrangles.
Thus, eight points �, . . . ,�123 on the complex plane constitute the vertices of two reciprocal
quadrangles (�23,�13,�12,�) and (�1,�2,�3,�123) if and only if there exist six real
dilation coefficients a, b, c and a1, b2, c3 such that

�12 − � = c(�1 − �2)

�23 − � = a(�2 − �3)

�13 − � = b(�3 − �1)

(3.7)
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and

�123 − �3 = c3(�13 − �23)

�123 − �1 = a1(�12 − �13)

�123 − �2 = b2(�23 − �12).

(3.8)

As shown in [25], on use of (3.7), elimination of �123 from (3.8) leads to three relations for
the dilation coefficients only, namely

a1 = − a

ab + bc + ca
b2 = − b

ab + bc + ca
c3 = − c

ab + bc + ca
. (3.9)

This result may be interpreted in two ways. Firstly, it provides an algebraic proof
of the existence of reciprocal quadrangles in that if we choose an arbitrary quadrangle
(�23,�13,�12,�) and arbitrarily prescribe three real dilation coefficients a, b, c then the
system (3.7), (3.8) determines a reciprocal quadrangle (�1,�2,�3,�123) uniquely up to
translation. Secondly, in the case of maps � which are to encode an infinite number of
reciprocal quadrangles, the dilation coefficients a, b, c are functions of the discrete variables
and the three linear equations (3.8) are nothing but incremented versions of the three linear
equations (3.7). The nonlinear system (3.9) then represents the compatibility conditions which
guarantee the existence of the map �. Thus, any solution of the discrete system (3.9) gives
rise to a map � which may be decomposed into two maps defined on the complementary fcc
lattices with the required properties.

The relations a1b = b2a, b2c = c3b and c3a = a1c imply the existence of a potential τ

which parametrizes the dilations a, b, c according to

a = τ2τ3

ττ23
b = τ1τ3

ττ13
c = τ1τ2

ττ12
(3.10)

so that (3.9) reduces to the integrable discrete BKP (dBKP) equation

ττ123 + τ1τ23 + τ2τ13 + τ3τ12 = 0. (3.11)

We therefore refer to the lattices on the complex plane defined by � as BKP lattices. The
dBKP equation is known to discretize the complete BKP hierarchy of soliton equations [31].
It also represents a superposition principle for eight solutions of a (2 + 1)-dimensional sine-
Gordon system [22] generated by the classical Moutard transformation [35]. Thus, once again,
there exists a remarkable connection between reciprocal figures of graphical statics and the
important Miwa equation (3.11).

4. A novel characterization of BKP lattices: integrable irregular lattices of slopes
on the plane

In section 2, it has been stated that reciprocal quadrangles may be characterized by a constraint
on the slopes of their edges, namely M6 = −1. Here, we give a proof of this assertion and
derive the necessary and sufficient conditions on the slopes which guarantee the existence of
lattices composed of reciprocal quadrangles.

4.1. Slope characterization of reciprocal quadrangles

We first decompose any point � on the complex plane into its real and imaginary parts
according to � = ϕ + iψ and note that six points �, . . . ,�123 constitute the vertices of two
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reciprocal quadrangles (�23,�13,�12,�) and (�1,�2,�3,�123) if and only if the relations

ϕ12 − ϕ

ϕ1 − ϕ2
= ψ12 − ψ

ψ1 − ψ2

ϕ123 − ϕ3

ϕ13 − ϕ23
= ψ123 − ψ3

ψ13 − ψ23

ϕ23 − ϕ

ϕ2 − ϕ3
= ψ23 − ψ

ψ2 − ψ3

ϕ123 − ϕ1

ϕ12 − ϕ13
= ψ123 − ψ1

ψ12 − ψ13

ϕ13 − ϕ

ϕ3 − ϕ1
= ψ13 − ψ

ψ3 − ψ1

ϕ123 − ϕ2

ϕ23 − ϕ12
= ψ123 − ψ2

ψ23 − ψ12

(4.1)

hold. Indeed, if we denote the above ratios by c, c3, a, a1, b, b2 respectively then the
linear system (3.7), (3.8) is obtained and the coefficients admit the interpretation as
dilations. Alternatively, we may ‘linearize’ the above relations by introducing coefficients
α, β, γ, α1, β2, γ3 according to

ψ12 − ψ = γ (ϕ12 − ϕ) ψ13 − ψ23 = γ3(ϕ13 − ϕ23)

ψ23 − ψ = α(ϕ23 − ϕ) ψ12 − ψ13 = α1(ϕ12 − ϕ13)

ψ13 − ψ = β(ϕ13 − ϕ) ψ23 − ψ12 = β2(ϕ23 − ϕ12)

(4.2)

and

ψ1 − ψ2 = γ (ϕ1 − ϕ2) ψ123 − ψ3 = γ3(ϕ123 − ϕ3)

ψ2 − ψ3 = α(ϕ2 − ϕ3) ψ123 − ψ1 = α1(ϕ123 − ϕ1)

ψ3 − ψ1 = β(ϕ3 − ϕ1) ψ123 − ψ2 = β2(ϕ123 − ϕ2).

(4.3)

In this case, the coefficients α, . . . , γ3 are but the slopes of the edges of the reciprocal
quadrangles displayed in figure 4. It is emphasized that, by construction, the systems (3.7),
(3.8) and (4.2), (4.3) are equivalent.

If we set aside the second system (4.3) then the first system (4.2) is descriptive of a single
quadrangle and no reference to reciprocity is made. The relations (4.2)1,3,5 may be regarded
as definitions of ψ12, ψ23 and ψ13. Insertion into the remaining relations then produces the
homogeneous linear system

 0 γ3 − α β − γ3

γ − α1 0 α1 − β

β2 − γ α − β2 0





ϕ12 − ϕ

ϕ23 − ϕ

ϕ13 − ϕ


 = 0. (4.4)

Since the quadrangles are assumed to be non-degenerate, the determinant of the above linear
system must vanish. Consequently,

M(α, β2, γ , α1, β, γ3) = −1 (4.5)

constitutes a necessary condition on the slopes for the existence of a quadrangle. Conversely,
if the coefficients α, . . . , γ3 satisfy the multi-ratio condition (4.5) and � = ϕ + iψ, ϕ23 =
Re(�23) are arbitrarily prescribed then the points �23,�13,�12,� determined by (4.2)1,3,5

and

ϕ12 − ϕ = β2 − α

β2 − γ
(ϕ23 − ϕ) ϕ13 − ϕ = γ3 − α

γ3 − β
(ϕ23 − ϕ) (4.6)

constitute the vertices of a reciprocal quadrangle. Moreover, the second linear system (4.3)
gives rise to the necessary and sufficient condition

M(α1, β, γ3, α, β2, γ ) = −1 (4.7)

which is equivalent to the multi-ratio condition (4.5). This proves theorem 3.
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It turns out convenient to regard (4.3)1,5 as definitions of ψ1, ψ2 and (4.3)3 as a constraint
on ϕi which may be brought into the two equivalent forms

ϕ1 − ϕ2 = α − β

β − γ
(ϕ2 − ϕ3) ϕ1 − ϕ3 = α − γ

β − γ
(ϕ2 − ϕ3). (4.8)

Any of the three equations (4.3)2,4,6 defines ψ123 and the remaining two which are identical
modulo the multi-ratio condition (4.7) serve as a definition of ϕ123. For future reference, we
record the two equivalent representations

ϕ123 − ϕ2 = γ3 − α

β2 − γ3
(ϕ2 − ϕ3) ϕ123 − ϕ3 = β2 − α

β2 − γ3
(ϕ2 − ϕ3). (4.9)

4.2. Slope characterization of BKP lattices

Here, as an extension of the preceding, we are concerned with BKP lattices encapsulating an
infinite number of reciprocal quadrangles. The fundamental system of lattice equations which
is required to hold is now represented by (4.2)1,3,5 and (4.3)1,3,5. The remaining equations
are redundant. The compatibility conditions which guarantee the existence of the function
ψ are then given by the lattice system (4.5)–(4.9). It is therefore necessary to establish the
consistency of the linear equations (4.6), (4.8) and (4.9). Thus, if we shift (4.8) in the n3- and
n2-directions respectively, then we obtain the expressions

ϕ22 − ϕ23 = (β2 − γ2)(γ − α)

(β2 − γ )(α2 − γ2)
(ϕ23 − ϕ)

ϕ33 − ϕ23 = (γ3 − β3)(β − α)

(γ3 − β)(α3 − β3)
(ϕ23 − ϕ).

(4.10)

Moreover, comparison of (4.9) with (4.6) shifted in the n3- and n2-directions respectively
leads to

ϕ223 − ϕ2 = (γ23 − β2)(γ3 − α)

(γ23 − α2)(β2 − γ3)
(ϕ2 − ϕ3)

ϕ233 − ϕ3 = (β23 − γ3)(β2 − α)

(β23 − α3)(β2 − γ3)
(ϕ2 − ϕ3).

(4.11)

The relations (4.6) and (4.8)–(4.11) may be cast into the form of a discrete matrix ‘Frobenius
system’, that is it is readily verified that

φi = L(i)φ φ =




ϕ

ϕ2

ϕ3

ϕ23


 (4.12)

where the matrices L(i), i = 1, 2, 3, depend in a known manner on the slopes α, β, γ .
Accordingly, the existence of the function ϕ is guaranteed if and only if the slopes satisfy the
compatibility conditions φik = φki , that is

L
(i)
k L(k) = L

(k)
i L(i) i �= k. (4.13)

Apart from the multi-ratio condition (4.5), these imply only three independent constraints on
the slopes. A canonical choice is given by the multi-ratio conditions

M(α, β2, α2, γ23, α23, β23, α3, γ3) = 1

M(β, γ3, β3, α13, β13, γ13, β1, α1) = 1

M(γ, α1, γ1, β12, γ12, α12, γ2, β2) = 1.

(4.14)

Hence, the following theorem is obtained.
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α β

γ

γ3

α1

β2

Figure 7. An octahedron and the multi-ratio condition MO = −1.

Theorem 4 (Slope characterization of BKP lattices). Three functions α, β, γ may be associated
with the slopes of a BKP lattice of reciprocal quadrangles if and only if they obey the multi-ratio
conditions (4.5) and (4.14).

By virtue of (4.2), (4.3) and (4.12), one may immediately observe that a slope function
determines a BKP lattice uniquely up to a choice of, for instance, ϕ, ϕ2, ϕ3, ϕ23 and ψ,ψ2.

4.3. Geometric implications: irregular lattices of slopes on the plane

It turns out that the multi-ratio conditions governing BKP lattices may be formulated in a
geometrically invariant manner. To this end, let � : Z

3 → C be a BKP lattice. Then, by
construction, any two parallel edges of a pair of reciprocal quadrangles constitute the images
of the two diagonals of the corresponding face of the cubic lattice Z

3 (cf figure 5). It is
therefore natural to associate the slope of the two edges with this face. Accordingly, we may
regard the slope functions α, β, γ as one function σ , say, which is defined on the centres of
the faces of the cubic lattice. The set of centres F ⊂ R

3 does not constitute a proper but an
‘irregular’ lattice since it is not translationally invariant. The image of F under σ may be
thought of as describing an irregular lattice of slopes on the plane. Thus, σ may be identified
with a map of the form

σ : F → P
1 (4.15)

where P
1 is a one-dimensional projective space.

We begin with an arbitrary map of the form (4.15). The set of centres F may be interpreted
as the vertices of octahedra inscribed in the elementary cubes of the lattice Z

3 as depicted in
figure 7. We consider a non-planar hexagon (P1, P2, P3, P4, P5, P6) formed by six edges of an
octahedron with vertices Pi in such a way that any two adjacent edges of the hexagon belong
to a triangular face of the octahedron (cf figure 7) and impose the multi-ratio condition

M(σ1, σ2, σ3, σ4, σ5, σ6) = −1 (4.16)

where σi = σ(Pi). Even though there exist four such hexagons, the corresponding multi-ratio
conditions M6 = −1 are equivalent. Thus, we may think of these multi-ratio conditions as
one multi-ratio condition

MO = −1 (4.17)

defined on the octahedron. It is evident that the multi-ratio condition (4.5) is equivalent to
imposing MO = −1 on all octahedra.

The eight octahedra inscribed in any eight adjacent elementary cubes of Z
3 are linked to

a cubo-octahedron as indicated in figure 8 so that the set F is naturally associated with the
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Figure 8. A cubo-octahedron and a multi-ratio condition MCO = 1.

‘tiling’ of Euclidean space by octahedra and cubo-octahedra. Any of the six square faces of a
cubo-octahedron is attached to four triangular faces (cf figure 8). The edges of the triangles
which are not shared by a square form a non-planar octagon (P1, P2, P3, P4, P5, P6, P7, P8)

on which we may define the multi-ratio condition

M(σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8) = 1. (4.18)

A straightforward calculation reveals that any three of the six multi-ratio conditions M8 = 1
associated with a cubo-octahedron are independent and the remaining three are algebraic
consequences. If we denote the multi-ratios defined on a cubo-octahedron by

MCO = 1 (4.19)

then the multi-ratio conditions (4.14) represent MCO = 1 imposed on all cubo-octahedra.
Consequently, theorem 4 may be reformulated as

Theorem 5 (Geometrically invariant characterization of BKP lattices). A map σ : F → P
1

corresponds to a BKP lattice if and only if the multi-ratio conditions MO = −1 and MCO = 1
defined on the octahedra and cubo-octahedra of the irregular lattice F are satisfied.

It is worth pointing out that the octahedra inscribed in the elementary cubes of a
cubic lattice form a subset of the octahedra encapsulated in an fcc lattice. In fact, the
results summarized in section 3 imply that the condition MO = −1 imposed on the
octahedra of an fcc lattice constitutes nothing but the real dSKP equation. Thus, the
discrete BKP equation is obtained by considering only the octahedra which belong to the
cubic lattice and imposing the additional constraints MCO = 1. This observation seems
reminiscent of the construction of the BKP hierarchy which is obtained from the KP
hierarchy by ‘freezing’ every second flow and imposing symmetry constraints on the remaining
flows [14].

We conclude with the remark that, in a similar manner, the cross-ratio M4 may be related
to non-planar quadrilaterals on tetrahedra. Indeed, if we consider a map of the form

� : Z
3 → C (4.20)

and regard Z
3 as the usual composition of two fcc lattices (cf figure 5) then we may associate

a cross-ratio with a quadrilateral (P1, P2, P3, P4) formed by the vertices Pi of a tetrahedron
contained in an elementary cube. If we denote by Pi+4 the vertices of the second tetrahedron
which are diagonally opposite Pi then another quadrilateral defined on the second tetrahedron is
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given by (P5, P6, P7, P8). The cross-ratio relation (2.6) is then expressed as

M(�1,�2,�3,�4) = M(�5,�6,�7,�8) (4.21)

where again �i = �(Pi). This one equation implies any of the other equations obtained by a
different choice of the (labelled) quadrilateral (P1, P2, P3, P4).

5. Cauchy problems: connections with conjugate lattices and the discrete Darboux
system

The multi-ratio conditions MO = −1 and MCO = 1 must be compatible since they represent
integrable BKP lattices. However, their canonical representation (4.5), (4.14) constitutes an
overdetermined set of equations for the slope functions α, β, γ . Hence, it may be suspected
that the well-determined system (4.14) by itself is an integrable system and (4.5) represents
an admissible constraint which is ‘in involution’. Here, we show that this is indeed the case
and discuss the implications of this observation.

5.1. The discrete Darboux system

In terms of the new dependent variables

χ(1) = α1 χ(2) = β2 χ(3) = γ3 (5.1)

the multi-ratio conditions (4.14) are conveniently expressed as(
χ

(k)

i − χ(i)

χ
(k)
i − χ

(i)
k

)
l

(
χ

(k)

i − χ
(i)

k

χ
(k)
i − χ(i)

)
=

(
χ

(l)

i − χ(i)

χ
(l)
i − χ

(i)
l

)
k

(
χ

(l)

i − χ
(i)

l

χ
(l)
i − χ(i)

)
(5.2)

where here and in the remainder of this paper i, k, l ∈ {1, 2, 3} are assumed to be distinct.
These may be satisfied identically by introducing potentials H(i) according to

H
(i)
k

H (i)
= χ

(k)
i − χ(i)

χ
(k)
i − χ

(i)
k

. (5.3)

The latter are now interpreted as linear equations for χ(i) and brought into the form

�kχ
(i) = ρ(ik)

(
χ

(k)
i − χ

(i)
k

)
(5.4)

where �k denote difference operators defined by �kf = fk − f and

ρ(ik) = �kH
(i)

H (i)
. (5.5)

Note that the systems (5.2) and (5.4) are completely equivalent. The linear system (5.4) is
readily shown to be compatible if and only if the coefficients H(i) obey the nonlinear discrete
equations

�ikH
(l) = �kH

(i)

l

H
(i)

l

�iH
(l) +

�iH
(k)

l

H
(k)

l

�kH
(l) (5.6)

with �ik = �i�k. These constitute a well-known integrable discretization of the Darboux
equations defining conjugate coordinates in R

3 [4, 13]. Accordingly, the multi-ratio conditions
(4.14) represent a Möbius invariant avatar of the discrete Darboux system.

The discrete Darboux system governs conjugate lattices (‘discrete conjugate coordinates’)
in R

3 [3, 15]. Thus, consider a three-dimensional quadrilateral lattice in a three-dimensional
Euclidean space, that is a map

r : Z
3 → R

3. (5.7)
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Conjugate lattices are defined by the requirement that all elementary quadrilaterals be planar.
In analytical terms, this means that the position vector r of a conjugate lattice obeys discrete
‘hyperbolic’ equations of the form

�ikr = ρ(ik)�ir + ρ(ki)�kr. (5.8)

Their compatibility conditions lead to the parametrization (5.5) of the coefficients ρ(ik) and
to the discrete Darboux system (5.6) for the potentials H(i). It is then natural to introduce
functions χ(i) satisfying (5.4) which play the role of ‘adjoint eigenfunctions’ [23]. These may
again be regarded as one function χ defined on the face centres F of the cubic lattice Z

3. Thus,
the preceding may be summarized in the following manner.

Theorem 6 (A Möbius invariant form of the discrete Darboux system). The discrete Darboux
system (5.6) governing conjugate lattices in R

3 is equivalent to the multi-ratio conditions
MCO = 1 imposed on the adjoint eigenfunction χ : F → R.

The geometric significance of the adjoint eigenfunctions is the following. If r represents
a conjugate lattice then the relations

�i r̃ = χ(i)�ir (5.9)

are compatible if and only if the coefficients χ(i) are solutions of the linear system (5.4). In
this case, the lattice r̃ constitutes another conjugate lattice known as a discrete Combescure
transform [23] of the conjugate lattice r. Discrete Combescure transforms are defined by the
geometric property that their edges are parallel to those of the original conjugate lattice. In
fact, any two lattices which are ‘parallel’, that is are related by (5.9), are necessarily conjugate
lattices and the dilations χ(i) obey the multi-ratio conditions (5.2). Accordingly, it has been
established that the slope function σ associated with a BKP lattice may also be interpreted as
a dilation function defining parallel conjugate lattices.

5.2. A well-posed Cauchy problem

Having shown that the multi-ratio conditions MCO = 1 constitute an integrable system on
their own, we now investigate in what sense the constraint MO = −1 is admissible. A key
observation is that the multi-ratios M6 and M8 are related by a simple identity. Consider a
cubo-octahedron enclosed by six cubo-octahedra and eight octahedra. The multi-ratios which
are associated with the six square faces of the central cubo-octahedron but are defined on the
six neighbouring cubo-octahedra and the multi-ratios corresponding to the eight octahedra are
algebraically dependent. In terms of the slope functions, this dependency is expressed as

M(α, β2, α2, γ23, α23, β23, α3, γ3)M(γ13, α11, β12, α112, γ123, α1123, β123, α113)

M(β, γ3, β3, α13, β13, γ13, β1, α1)M(α12, β22, γ23, β223, α123, β1223, γ123, β122)

M(γ, α1, γ1, β12, γ12, α12, γ2, β2)M(β23, γ33, α13, γ133, β123, γ1233, α123, γ233)

= (5.10)

M(α, β2, γ , α1, β, γ3)M(α123, β1223, γ123, α1123, β123, γ1233)

M(β1, α1, γ1, β12, α11, γ13)M(α23, β23, γ233, α123, β223, γ23)

M(γ2, β2, α2, γ23, β22, α12)M(β13, γ13, α113, β123, γ133, α13)

M(α3, γ3, β3, α13, γ33, β23)M(γ12, α12, β122, γ123, α112, β12).

Accordingly, if any seven multi-ratio conditions MO = −1 associated with the octahedra are
satisfied then the remaining eighth likewise holds provided that MCO = 1 on the relevant
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Figure 9. An eight-face complex.

(a) (b )

Figure 10. Cauchy data for MCO = 1.

cubo-octahedra. In other words, the multi-ratio condition MO = −1 ‘propagates’ along the
diagonals of the lattice. Specifically, if we choose, for instance, the representatives

M(α1, β2, α12, γ23, α123, β23, α13, γ3) = 1

M(β2, γ3, β23, α13, β123, γ13, β12, α1) = 1

M(γ3, α1, γ13, β12, γ123, α12, γ23, β2) = 1

(5.11)

which may be regarded as evolution equations in the (1, 1, 1)-direction, then the constraint

M(α, β2, γ , α1, β, γ3) = −1 (5.12)

is preserved by the evolution (5.11) by virtue of the identity (5.10).
It is now convenient to identify the construction of the slope function σ with filling the

cubic lattice Z
3 with faces. Thus, if σ is known on (the centre of) a face then we insert this

face into the lattice. Accordingly, if σ is known on five faces of an elementary cube then
its value on the remaining face is determined by the multi-ratio condition MO = −1 and we
complete the cube by inserting the remaining face. Similarly, a multi-ratio condition MCO = 1
may be visualized by an eight-face complex of the type displayed in figure 9. Thus, if σ

is known on any seven faces of this complex then the corresponding multi-ratio condition
MCO = 1 determines its value on the remaining face which is then inserted into the lattice. It
is also natural to identify the cubo-octahedra with their centres which constitute the vertices
of the cubic lattice. Hence, whenever a multi-ratio condition defined on a cubo-octahedron is
known to be satisfied then we attach an arrow to the corresponding central vertex as indicated
in figure 9.

Natural Cauchy data associated with the lattice equations MCO = 1 are given by

α(n1, n2, 0) α(n1, 0, n3)

β(n1, n2, 0) β(0, n2, n3) (5.13)

γ (n1, 0, n3) γ (0, n2, n3).

A clipping of the corresponding ‘initial state’ of the lattice in the first octant is shown in
figure 10(a). The faces of the planes ni = 0 and ni = 1 may then be inserted iteratively
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(a) (b)

Figure 11. Cauchy data for MCO = 1 and MO = −1.

on use of the multi-ratio conditions MCO = 1, that is eight-face complexes. The resulting
intermediate state of the lattice is depicted in figure 10(b). The additional data constructed in
this manner read

α(0, n2, n3) α(1, n2, n3)

β(n1, 0, n3) β(n1, 1, n3) (5.14)

γ (n1, n2, 0) γ (n1, n2, 1).

It is now readily verified that the entire Z
3 lattice may be filled with faces by means of eight-

face complexes. Moreover, in the process each vertex becomes endowed with three arrows
corresponding to three multi-ratio conditions per octahedron. Consequently, the multi-ratio
conditions MCO = 1 are satisfied throughout the lattice.

The preceding construction implies that we may choose Cauchy data of the form (5.13)
and (5.14) as long as these allow for MCO = 1 wherever applicable on the region  bounded by
the planes ni = 0 and ni = 1. We now specialize these data in such a way that, in addition, the
multi-ratio condition MO = −1 holds on . Thus, we arbitrarily prescribe the slope function
on the boundaries of three square cylinders subject to the multi-ratio condition associated with
the one central cube enclosed by these cylinders, that is (cf figure 11(a))

α(ε, n2, 0) α(ε, 0, n3)

β(n1, ε, 0) β(0, ε, n3) ε = 0, 1 (5.15)

γ (n1, 0, ε) γ (0, n2, ε)

and

M(α, β2, γ , α1, β, γ3)|(n1,n2,n3)=(0,0,0) = −1. (5.16)

By virtue of the multi-ratio condition MO = −1, the slope function is then uniquely determined
on the faces inside the square cylinders. Moreover, if we choose additional data

α(n1 �= ε, n2 �= 0, 0) β(0, n2 �= ε, n3 �= 0) γ (n1 �= 0, 0, n3 �= ε) (5.17)

as indicated in figure 11(b), then iterative application of the multi-ratio conditions MCO = 1
and MO = −1 determines the slope function on . By construction, all relevant multi-ratio
conditions are satisfied on . The data specified in this manner may now be used as Cauchy data
of the form (5.13), (5.14) in order to construct a unique slope function σ satisfying MCO = 1
throughout the lattice. Moreover, since the multi-ratio condition MO = −1 propagates in
all diagonal directions, it likewise holds everywhere. Accordingly, the following theorem is
obtained.

Theorem 7 (A well-posed Cauchy problem for BKP slope lattices). Cauchy data of the form
(5.15)–(5.17) uniquely determine a slope function σ obeying MCO = 1 and MO = −1.
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[13] Darboux G 1910 Leçons sur les systèmes orthogonaux et les coordonnées curvilignes (Paris: Gauthier-Villars)
[14] Date E, Jimbo M, Kashiwara M and Miwa T 1982 Transformation groups for soliton equations: IV. A new

hierarchy of soliton equations of KP-type Physica D 4 343–65
[15] Doliwa A 1997 Geometric discretisation of the Toda system Phys. Lett. A 234 187–92
[16] Elcock E W and Michie D (ed) 1977 Machine Intelligence vol 8 (Chichester/New York: Ellis Horwood/Halsted)
[17] Gaudin M 1976 Diagonalisation d’une classe d’Hamiltoniens de spin J. Physique 37 1087–98
[18] Gaudin M 1983 La fonction d’onde de Bethe (Collection du Commissariat à l’Énergie Atomique: Série
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